A linear sampling method for the inverse cavity scattering problem of biharmonic waves My Advanced Topics Presentation

General Ozochiawaeze April 1, 2024

- ▶ Part 1: Introduction
- ▶ Part 2: Direct Scattering Problem for the Biharmonic Wave Equation
- ▶ Part 3: Direct Imaging Methods
- ► Part 4: Reconstruction of the Cavity D via the Linear Sampling Method
- ▶ Part 5: Ongoing Future Work

Part 1: Introduction

Inverse Obstacle Wave Scattering

- Send a wave and observe the reflected wave by an unknown obstacle
- Question: What information about the obstacle can one extract from the observed wave?
- Type of waves: flexural waves in elastic plates (biharmonic wave equation)

Applications of Biharmonic Wave Scattering

Figure: View of an Acoustic Black Hole: Technique for Passive Vibration Control Wang, Q. & Ge, X. (2020)

Figure: A cylindrical shell acting as a platonic elastic cloak of an object in a thin elastic plate Farhat, M., Chen, PY., Bağcı, H. *et al.* (2014)

Applications of Biharmonic Wave Scattering

Figure: Elastic Cloaking Colquitt, D. (2015) Figure: A schematic of a plate with three equally spaced neutralisers for vibration damping

Part 2: Direct Scattering Problem for the Biharmonic Wave Equation

Direct and Inverse Scattering of Biharmonic Waves

Problem (The Direct Scattering Problem)

We consider the time-harmonic biharmonic scattering problem

- 1. $D \subset B_{\rho} := \{x \in \mathbb{R}^2 : |x| \le \rho\} \subset \mathbb{R}^2$ is a clamped cavity with ∂D -Smooth
- 2. The cavity receives illumination from the incident plane wave $u^i = \exp\left(ikx\cdot d\right)$

3.
$$\Gamma_{\rho} = \{x \in \mathbb{R}^2 : |x| = \rho\}$$

Figure: Clamped Cavity in a Thin Plate

Direct Scattering of Biharmonic Waves

The total field $u = u^i + u^s \in H^2_{loc}(\mathbb{R}^2)$ satisfies, with r = |x|,

$$\begin{cases} \Delta^2 u - k^4 u = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{D} \\ u = 0, \quad \partial_n u = 0 \quad \text{on } \partial D \\ \lim_{r \to \infty} r^{1/2} \left(\partial_r u^s - iku^s \right) = 0, \quad \lim_{r \to \infty} r^{1/2} \left(\partial_r \Delta u^s - ik\Delta u^s \right) = 0 \end{cases}$$
(1)

Remark

Let $u^i = \exp(ikx \cdot d)$ then the radiating scattered field $u^s(x, d; k)$ depends on the incident direction d and wave number k.

The scattered field, also known as the radiating solution, has the following asymptotic expansion

$$u^s(x,d;k) = rac{e^{ikr}}{r^{1/2}}u^\infty(\hat{x}) + O\left(rac{1}{r^{3/2}}
ight) \quad ext{as} \; r = |x| o \infty$$

where $\hat{x}, d \in \mathbb{S}^1 = \{x \in \mathbb{R}^2 : |x| = 1\}.$

The scattered field, also known as the radiating solution, has the following asymptotic expansion

$$u^s(x,d;k) = rac{e^{ikr}}{r^{1/2}}u^\infty(\hat{x}) + O\left(rac{1}{r^{3/2}}
ight) \quad ext{as } r = |x| o \infty$$

where $\hat{x}, d \in \mathbb{S}^1 = \{x \in \mathbb{R}^2 : |x| = 1\}$. Now define the far-field operator as $\mathcal{F} : L^2(\mathbb{S}^1) \to L^2(\mathbb{S}^1)$

$$(\mathcal{F}g)(\hat{x}) = A_g \coloneqq \int_{\mathbb{S}^1} u^{\infty}(\hat{x}, d; k)g(d) \, ds(d).$$

The scattered field, also known as the radiating solution, has the following asymptotic expansion

$$u^s(x,d;k)=rac{e^{ikr}}{r^{1/2}}u^\infty(\hat{x})+O\left(rac{1}{r^{3/2}}
ight) \quad ext{as } r=|x| o\infty$$

where $\hat{x}, d \in \mathbb{S}^1 = \{x \in \mathbb{R}^2 : |x| = 1\}$. Now define the far-field operator as $\mathcal{F} : L^2(\mathbb{S}^1) \to L^2(\mathbb{S}^1)$

$$(\mathcal{F}g)(\hat{x}) = A_g \coloneqq \int_{\mathbb{S}^1} u^{\infty}(\hat{x}, d; k)g(d) \, ds(d).$$

The **inverse problem** reads: Given \mathcal{F} for a range of wave numbers obtain qualitative information about the cavity D in a thin elastic plate.

Consider the two auxiliary functions

$$u_{H}^{s} = -\frac{1}{2k^{2}}(\Delta u^{s} - k^{2}u^{s}), \quad u_{M}^{s} = \frac{1}{2k^{2}}(\Delta u^{s} + k^{2}u^{s})$$

 u^s_H is the 'propagative part' of u^s and u^s_M is the 'evanescent part' of u^s such that

$$u^s = u^s_H + u^s_M, \quad \Delta u^s = k^2 (u^s_M - u^s_H)$$

Consider the two auxiliary functions

$$u_{H}^{s} = -\frac{1}{2k^{2}}(\Delta u^{s} - k^{2}u^{s}), \quad u_{M}^{s} = \frac{1}{2k^{2}}(\Delta u^{s} + k^{2}u^{s})$$

 u^s_H is the 'propagative part' of u^s and u^s_M is the 'evanescent part' of u^s such that

$$u^s = u^s_H + u^s_M, \quad \Delta u^s = k^2 (u^s_M - u^s_H)$$

 u_{H}^{s} and u_{M}^{s} satisfy the Helmholtz equation and modified Helmholtz equation respectively

$$\Delta u^s_H + k^2 u^s_H = 0, \quad \Delta u^s_M - k^2 u^s_M = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{D}$$

We can reformulate the scattering problem (1) as

$$\begin{cases} \Delta u_H^s + k^2 u_H^s = 0, \quad \Delta u_M^s - k^2 u_M^s = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{D} \\ u_H^s + u_M^s = -u^i, \quad \partial_n u_H^s + \partial_n u_M^s = -\partial_n u^i \quad \text{on } \partial D \\ \lim_{r \to \infty} r^{1/2} \left(\partial_r u_H^s - ik u_H^s \right) = 0 \\ \lim_{r \to \infty} r^{1/2} \left(\partial_r u_M^s - ik u_M^s \right) = 0, \quad r = |x| \end{cases}$$

$$(2)$$

We can reformulate the scattering problem (1) as

$$\begin{split} & \begin{pmatrix} \Delta u_H^s + k^2 u_H^s = 0, & \Delta u_M^s - k^2 u_M^s = 0 & \text{in } \mathbb{R}^2 \setminus \overline{D} \\ & u_H^s + u_M^s = -u^i, & \partial_n u_H^s + \partial_n u_M^s = -\partial_n u^i & \text{on } \partial D \\ & \lim_{r \to \infty} r^{1/2} \left(\partial_r u_H^s - ik u_H^s \right) = 0 \\ & \lim_{r \to \infty} r^{1/2} \left(\partial_r u_M^s - ik u_M^s \right) = 0, \quad r = |x| \end{split}$$

$$(2)$$

Remark (Exponential Decay of u_M^s)

The evanescent parts u_M^s and $\partial_n u_M^s$ exhibit exponential decay as $r = |x| \to \infty$ for the fixed wavenumber k as $kr \to \infty$. Specifically, u_M^s satisfies

$$u^s_M(x) = O\left(\frac{e^{-kr}}{r^{\frac{1}{2}}}\right), \, r \to \infty$$

Far-Field Pattern of the Biharmonic Scattered Field

Because of the exponential decay of the evanescent part u_M^s and $\partial_n u_M^s$, it follows from the biharmonic wave decomposition that the far-field patterns of u^s and its propagative part u_H^s coincide up to a constant depending on k, i.e.,

$$u^{\infty}(\hat{x}) = C(k) \, u_H^{\infty}(\hat{x}),$$

where $C(k)=-1/2k^2.$ The far-field operator $\mathcal{F}\,:\,L^2(\mathbb{S}^1)\to L^2(\mathbb{S}^1)$ can be equivalently defined as

$$(\mathcal{F}g)(\hat{x}) = \int_{\mathbb{S}^1} C(k) \, u_H^\infty(\hat{x},d;k) g(d) \, ds(d)$$

Problem (Inverse Cavity Scattering Problem)

Given \mathcal{F} for a range of wave numbers obtain qualitative information about the cavity D in a thin elastic plate.

Part 3: Direct Imaging Methods

Reconstruction Methods

- 1. Iterative methods to determine *D* (expensive optimization; a good initial guess is needed; only one or a few incident waves are needed; reconstructions are reasonably good)
- 2. Domain decomposition methods (solve an ill-posed linear integral equation first to reduce computational expense, then optimize)
- 3. **Direct imaging methods** (avoid optimization entirely, solve many ill-posed integral equations, requires a lot of multistatic data but **no a priori information**; partial qualitative information about the scatterer is obtained)

Reconstruction of *D* via **Direct Imaging Methods**

Remark (Shape Reconstruction)

Direct Imaging Methods: the idea is to construct an indicator test function *I* that will test whether a point *z* lies inside or outside the scatterer.

Benefits: *can reconstruct the shape of the scatterer in a computational simple manner with* **no a priori information**.

Reconstruction of *D* **via Direct Imaging Methods**

Remark (Shape Reconstruction)

Direct Imaging Methods: the idea is to construct an indicator test function I that will test whether a point z lies inside or outside the scatterer.

Benefits: can reconstruct the shape of the scatterer in a computational simple manner with **no a priori information**.

- Assume only the location and shape of the object is needed (e.g., looking for a crack or cavity).
- ► Based on model, derive an indicator test function I(z), depending on coordinates, so that

$$I(z) = \begin{cases} 0, & z \notin \text{ object} \\ 1, & z \in \text{ object} \end{cases}$$

► I(z) must be fast to compute from the scattered or far-field data.

Direct methods for the solutions; no need for iterative computations

- ► Colton-Kirsch Linear Sampling Method published in 1996
- ► Ikehata Probe Method published in 1998
- Kirsch Factorization Method published 1998
- ► Ikehata Enclosure Method published 1999
- ► Potthast Singular Sources Method published 2000
- Potthast & Luke No Response Test published 2003
- Potthast Orthogonality Sampling Method published 2010
- ► Liu Direct Sampling Method published 2016

Sampling Methods

Figure: Types of Sampling

- '96 Colton Kirsch: linear sampling method, factorization (point sampling in grid)
- ► '98 lkehata: probing method (curve); '00 Potthast: singular source method (curve/needle)
- Luke, Potthast, Sylvester, Kusiak, Ikehata: range test, no response test, enclosure method (sets/planes)

Figure: Probing the scatterer with curve/needle

The probe method (Ikehata '98) is a method of **probing inside** the given material by using the sequence of the energy gap

$$I_n \coloneqq \langle (\Lambda_0 - \Lambda_D)(v_n|_{\partial\Omega}), \overline{v_n}|_{\partial\Omega} \rangle$$

for a specially chosen sequence $\{v_n\}$ of solutions of the governing equation for the background scatterer/cavity, with $D \subset int(\Omega)$.

- $I_n \to \infty$ on a given curve
- I_n is convergent outside the curve

Like the probe method, the SSM (Potthast '00) is a method of **probing inside** the given material but now using the **magnitude** of the scattered field of singular sources

$$I(z) \coloneqq |\Psi^s(z,z)|.$$

Approximated by backprojection of the form

$$\Psi^{s}(y,z) \approx \int_{\mathbb{S}^{n-1}} \int_{\mathbb{S}^{n-1}} u^{\infty}(\hat{x},d) g(\hat{x},y) g(-d,z) \, ds(d) ds(\hat{x})$$

for explicitly constructed kernels $g(\cdot,\cdot).$

- $I(z) \to \infty$ on a given curve (as $z \to \partial D$)
- $\blacktriangleright~I(z)$ is convergent outside the curve

Enclosure Method

Figure: Intersecting the scatterer with sets

The enclosure method (Ikehata '99) enables one to construct the support of unknown convex polygons from the knowledge of one measured field.

$$v = e^{\tau x \cdot (\omega + i\omega^{\perp})}$$

is a special harmonic incident field.

- $\blacktriangleright\ \Omega$ is some domain known to contain the unknown scatterer
- $\blacktriangleright \ D \subset \mathsf{int}(\Omega)$

21/35

Enclosure Method

At the corners of polygonal scatterers, the following indicator function becomes unbounded

$$I_{\omega}(\tau,t) \coloneqq e^{-\tau t} \left\{ \left\langle \frac{\partial u}{\partial n} \bigg|_{\partial \Omega}, v |_{\partial \Omega} \right\rangle - \left\langle \frac{\partial v}{\partial n} \bigg|_{\partial \Omega}, u |_{\partial \Omega} \right\rangle \right\}$$

with $\tau > 0$, $t \in \mathbb{R}$, u the unknown, $\omega \in \mathbb{S}^{n-1}$ the direction vector.

At the corners of polygonal scatterers, the following indicator function becomes unbounded

$$I_{\omega}(\tau,t) \coloneqq e^{-\tau t} \left\{ \left\langle \frac{\partial u}{\partial n} \bigg|_{\partial \Omega}, v |_{\partial \Omega} \right\rangle - \left\langle \frac{\partial v}{\partial n} \bigg|_{\partial \Omega}, u |_{\partial \Omega} \right\rangle \right\}$$

with $\tau > 0$, $t \in \mathbb{R}$, u the unknown, $\omega \in \mathbb{S}^{n-1}$ the direction vector.

- ► Benefit: requires only one special harmonic incident field
- Benefit: so doesn't require too much data; works well with limited aperture data
- Drawback: only works for convex polygonal scatterers

Factorization Method

Most direct imaging/sampling methods give only sufficient conditions for $z \in \text{supp } D$. Linear sampling method is no exception. But factorization method (Kirsch 90's, Grinberg 00's) gives necessary & sufficient conditions, assuming additional assumptions.

Idea

$$u^{i}(x) = \int_{\mathbb{S}^{n-1}} e^{ikx \cdot d} g(d) \, ds(d), \quad g \in L^{2}(\mathbb{S}^{n-1})$$
$$u^{s}(x) = \frac{e^{ik|x|}}{|x|^{(n-1)/2}} u^{\infty}(\hat{x}) + O\left(\frac{1}{|x|^{n-2}}\right)$$

the far-field operator

$$\mathcal{F} : L^2(\mathbb{S}^{n-1}) \to L^2(\mathbb{S}^{n-1}), \quad \mathcal{F}g = A_g$$

is factored as

 $\mathcal{F} = -\mathcal{GTG}^*, \quad \mathcal{G} \text{ compact, } \mathcal{T} \text{ isomorphism}$

$$\mathcal{F} : L^2(\mathbb{S}^{n-1}) \to L^2(\mathbb{S}^{n-1}), \quad \mathcal{F}g = A_g$$

is factored as

$$\mathcal{F} = -\mathcal{GTG}^*, \quad G \text{ compact, } T \text{ isomorphism}$$

Range of \mathcal{G} can be characterized and gives information about supp(D). But the main benefit is that if

- $\blacktriangleright \ {\cal T}$ is strictly coercive
- ➤ F is a normal compact operator (so it has a 'positive square root')

then $\operatorname{Range}(\mathcal{G}) = \operatorname{Range}(|\mathcal{F}|^{1/2}).$

Range of \mathcal{F} can be directly characterized under these assumptions, giving direct info on supp(D).

Part 4: Reconstruction of the Cavity D via the Linear Sampling Method

Theorem (P. Li & H. Dong, 2023)

Let D_1 and D_2 be two cavities meeting the clamped boundary conditions, with corresponding far-field patterns u_1^∞ and u_2^∞ satisfying

$$u_1^{\infty}(\hat{x}, d) = u_2^{\infty}(\hat{x}, d), \quad \forall \hat{x}, d \in \mathbb{S}^1.$$

Then $D_1 = D_2$.

- This result guarantees uniqueness of the inverse cavity scattering problem with clamped boundary conditions.
- Proof of the result is based on the reciprocity relations of the far-field patterns of the corresponding propagative and evanescent parts.

The Far-Field Equation

 $G_H(x,z) \coloneqq \frac{i}{4} H_0^{(1)}(k|x-z|), x \neq z$: the fundamental solution of the Helmholtz equation.

 $G_M(x,z) := \frac{i}{4} H_0^{(1)}(ik|x-z|), x \neq z$: the fundamental solution to the modified Helmholtz. Then

$$G(x,y) = \frac{1}{2k^2}(G_M(x,y) - G_H(x,y)), \quad x \neq y$$

is the fundamental solution of $\Delta^2 - k^4$. G has the far-field pattern

$$G^{\infty}(\hat{x}) = -\frac{1}{2k^2} \frac{e^{i\pi/4}}{\sqrt{8\pi k}} e^{-ikz\cdot\hat{x}}$$

The Far-Field Equation

 $G_H(x,z) \coloneqq \frac{i}{4}H_0^{(1)}(k|x-z|), x \neq z$: the fundamental solution of the Helmholtz equation.

 $G_M(x,z)\coloneqq \frac{i}{4}H_0^{(1)}(ik|x-z|),\,x\neq z:$ the fundamental solution to the modified Helmholtz. Then

$$G(x,y) = \frac{1}{2k^2}(G_M(x,y) - G_H(x,y)), \quad x \neq y$$

is the fundamental solution of $\Delta^2 - k^4$. G has the far-field pattern

$$G^{\infty}(\hat{x}) = -\frac{1}{2k^2} \frac{e^{i\pi/4}}{\sqrt{8\pi k}} e^{-ikz \cdot \hat{x}}.$$

$$(\mathcal{F}g_z)(\hat{x}) = G^{\infty}(\hat{x}, z), \quad g_z \in L^2(\mathbb{S}^1), \, z \in \mathbb{R}^2$$
(3)

On Solving the Far-Field Equation

$$(\mathcal{F}g_z)(\hat{x}) = G^{\infty}(\hat{x}, z) \quad g_z \in L^2(\mathbb{S}^1), \, z \in \mathbb{R}^2$$

Let $z \in D$ and suppose that g_z solves the far-field equation.

• Rellich's Lemma $\implies u^s(x) = G(x,z)$ in $\mathbb{R}^2 \setminus \overline{D}$

On Solving the Far-Field Equation

In general, the far-field equation does not have a solution for any $z\in\mathbb{R}^2$ since $\mathcal F$ is compact.

For $z \in D$, the far-field equation has a solution if and only if the **interior boundary value problem**

$$\begin{split} \Delta^2 w_z - k^4 w_z &= 0 \quad \text{in } D \\ w_z + G(\cdot,z) &= 0, \quad \partial_n w_z + \partial_n G(\cdot,z) &= 0 \text{ on } \partial D \end{split}$$

has a solution w_z such that $w_z = v_g$ is a Herglotz function with kernel g on ∂D .

- Equivalently, this holds if $k^4 \neq {\rm Dirichlet}$ eigenvalue of $-\Delta^2$ in D.

Factorization of the Far-Field Operator ${\cal F}$

Define the following operators

$$\begin{aligned} \mathcal{G} &: H^{3/2}(\partial D) \times H^{1/2}(\partial D) \to L^2(\mathbb{S}^1) : \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \mapsto w^{\infty} \\ \mathcal{H} &: L^2(\mathbb{S}^1) \to H^{3/2}(\partial D) \times H^{1/2}(\partial D) : g \mapsto \begin{pmatrix} v_g \\ \partial_n v_g \end{pmatrix} \end{aligned}$$

Then

$${\cal F}=-{\cal GH}$$

- ➤ G maps boundary data of the exterior boundary value problem to the far-field pattern of the solution w to the exterior problem
- $\blacktriangleright~\mathcal{H}$ is the Herglotz wave operator

Range Characterization of the Cavity D

The **linear sampling method** is a direct imaging method based on the following range characterization of the cavity *D*:

Lemma

 $z \in D$ if and only if $G^{\infty}(\hat{x}, z) \in \operatorname{Range}(\mathcal{G})$.

This result helps justify the use of the indicator test function

$$I(z) \coloneqq \frac{1}{||g_z||_{L^2(\mathbb{S}^1)}}$$

LSM states

- I(z) > 0 if $z \in D$
- $\blacktriangleright \ I(z) \to 0 \text{ as } z \to \partial D \text{ and } I(z) = 0 \text{ if } z \notin \partial D$

Reconstruction of the Cavity *D* via the LSM

Theorem (The Linear Sampling Method)

Suppose z ∈ D. Given ε > 0 there exists a regularized solution g_{z,ε} ∈ L²(S¹) to the far-field equation such that

$$||\mathcal{F}g_{z,\epsilon} - G^{\infty}(\cdot, z)||_{L^2(\mathbb{S}^1)} < \epsilon.$$

Furthermore, $||g_{z,\epsilon}||_{L^2(\mathbb{S}^1)}$ is unbounded as $z \to z^* \in \partial D$.

• Suppose $z \notin D$. Then the regularized solution of the far-field equation $g_{z,\epsilon}$ satisfies

 $||g_{z,\epsilon}||_{L^2(\mathbb{S}^1)}$ is unbounded as $\epsilon \to 0$, assuming that

$$||\mathcal{F}g_{z,\epsilon} - G^{\infty}(\cdot, z)||_{L^2(\mathbb{S}^1)} o 0 \quad \text{as } \epsilon o 0.$$

Reconstruction of the Cavity *D* via the LSM

- Construct a grid \mathcal{G}
- ► For each $z_i \in \mathcal{G}$, solve the regularized far-field equation $(\alpha I + \mathcal{F}^* \mathcal{F})g_{z_i} = \mathcal{F}^* G^{\infty}(\hat{x}, z_i)$
- ► To reconstruct ∂D , we plot $z_i \mapsto 1/||g_{z_i,\epsilon}||_{L^2(S^1)}$ for each point z_i in some grid point in \mathbb{R}^2 .

Figure: Shape Reconstruction via Sampling in a Grid

Part 5: Ongoing Future Work

- numerical implementation of the linear sampling method with far-field data
- ▶ incorporate the presence of noisy data in implementation
- ▶ other boundary conditions (e.g., free plate, simply supported)
- ► formulate the factorization method for the inverse cavity scattering problem based on the symmetric factorization of *F*

